디시인사이드 갤러리

갤러리 이슈박스, 최근방문 갤러리

갤러리 본문 영역

마동석 펀치모바일에서 작성

야갤러(58.239) 2024.11.23 12:03:05
조회 60 추천 0 댓글 0


김동학 프로9단(이하 '김동학')과 카장9단이 양사 접장기(김동학이 양사를 접는 쪽)를 두었을 때 누가 이길 확률이 더 높을까요?
확률의 정의:각 경우가 일어날 가능성이 모두 같은 어떤 실험이나 관찰을 여러 번 반복할 때, 어떤 사건이 일어나는 상대도수가 일정한 값에 가까워지면 이 일정한 값에 가까워지면 이 일정한 값은 일어나는 모든 경우의 수에 대한 어떤 사건이 일어나는 경우의 수의 비율과 같고, 이를 그 사건이 일어날 확률이라 한다.
사건 A가 일어날 확률=일어나는 모든 경우의 수 분의 사건 A가 일어나는 경우의 수
양사 접장기에서 김동학이 승리할 확률=일어나는 모든 경우의 수 분의 양사 접장기에서 김동학이 승리하는 사건이 일어나는 경우의 수
양사 접장기에서 카장9단이 승리할 확률=일어나는 모든 경우의 수 분의 카장 9단이 승리하는 사건이 일어나는 경우의 수
김동학이 승리할 확률과 카장9단이 승리할 확률을 비교하기 위해서는 김동학이 승리하는 사건이 일어나는 경우의 수와 카장9단이 승리하는 사건이 일어나는 사건이 일어나는 경우의 수를 비교해야 합니다. 그러기 위해서는 '김동학이 포진 대결에서 우위를 점하는 경우의 수'vs'카장9단이 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수', '김동학이 중반전투에서 우위를 점하는 사건이 일어나는 경우의 수'vs'카장9단이 중반전투에서 우위를 점하는 사건이 일어나는 경우의 수', '카장 9단이 방송 대국이라는 특수한 환경에 적응하지 못하는 사건이 일어나는 경우의 수'vs'카장 9단이 방송 대국이라는 특수한 환경에 적응하지 못하는 사건이 일어나는 경우의 수' 를 비교해 어떤 사건이 일어나는 경우의 수가 더 큰지를 알아내고, 최종적으로 양사 접장기에서 김동학이 승리할 확률이 높은지 카장9단이 승리할 확률이 높은지 비교하면 됩니다. 접장기에서의 확률을 구하기 위해 먼저 맞장기에서의 확률을 먼저 구한 뒤, 접장기라는 조건을 추가해보겠습니다.
결론부터 말씀드리자면, 맞장기에서 '김동학이 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수'='카장9단이 포진 대결에서 우위를 점하는 사것이 일어나는 경우의 수'
'김동학이 중반전투에서 우위를 점하는 사건이 일어나는 경우의 수'='카장9단이 중반전투에서 우위를 점하는 사건이 일어나는 경우의 수
'카장9단이 방송 대국이라는 특수한 환경에 적응하지 못하는 사건이 일어나는 경우의 수'='카장9단이 방송 대국이라는 특수한 환경에 적응하는 사건이 일어나는 경우의 수' 입니다.
먼저, '김동학이 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수'='카장9단이 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수' 인 근거를 설명하겠습니다.
예를 들어, 김동학이 A포진을 두었을 때, 카장9단이 A포진에 대한 공략법을 연구해 와 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수가 있고, 그러지 못하고 포진 대결에서 김동학이 우위를 점하는 사건이 일어나는 경우의 수가 있습니다. 김동학이 B포진을 두었을 때, 카장9단이 B포진에 대한 공략법을 연구해 와 포진 대결에서 카장9단이 우위를 점하는 사건이 일어나는 경우의 수가 있고, 그러지 못해 포진 대결에서 김동학이 우위를 점하는 사건이 일어나는 경우의 수가 있습니다. 반대로 카장9단이 A포진을 두었을 때, 김동학이 A포진을 공략해 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수가 있고, 그 반대의 사건이 일어나는 경우의 수도 있습니다.
이 예시들을 포함해서, 김동학vs카장9단이 포진 대결을 할 때 김동학이 우위를 점하는 사건이 일어나는 경우의 수와 카장9단이 우위를 점하는 사건이 일어나는 경우의 수가 셀 수 없이 많습니다. 김동학vs카장9단 포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 A, B, C, ...,Z까지 있다고 가정한다면, 그와 반대되는 사건이 일어나는 경우의 수, 즉 '카장9단이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 a, b, c, ...,z만큼 존재합니다. 포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수만큼 '카장9단이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 있습니다.

예를 들어, 포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 1만이라고 한다면, 포진 대결에서 '카장9단이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 1만입니다.

포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 1억가지라면, 그에 반대되는 사건이 일어나게 하는 경우의 수 역시 1억가지입니다.

다시 한 번 예시를 든다면, 김동학이 C포진을 두었을 때, C포진으로 김동학이 이기는 사건이 일어나게 하는 경우의 수도 있고, 그 포진을 공략해 카장9단이 이기는 사건이 일어나는 경우의 수도 있습니다. 이런 식으로 계속 가다 보면, 김동학이 1억 번째 포진을 두었을 때 그 1억번째 포진을 통해 카장9단과의 포진 대결에서 승리하는 사건이 일어나는 경우의 수도 있고, 카장9단이 그 포진을 공략해 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수, 즉 반대의 사건이 일어나게 하는 경우의 수가 반드시 존재한다는 것입니다. 다시 말해, 김동학이 n번째 포진을 두었을 때 김동학이 n번째 포진을 통해 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 있다면 그에 반대되는 사건이 일어나게 하는 경우의 수, 즉 카장9단이 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 반드시 존재합니다. 카장9단이 n번째 포진을 두었을 때 카장9단이 n번째 포진을 통해 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 있다면 그에 반대되는 사건이 일어나게 하는 경우의 수, 즉 김동학이 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 반드시 존재합니다. 이 원리를 통해서 김동학vs카장9단의 포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 개별적인 경우의 수가 있을 때 그와 반대되는 사건이 일어나게 하는 경우의 수가 반드시 존재한다.
'김동학이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 개별적인 경우의 수와 '카장9단이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 개별적인 경우의 수는 1:1로 대응된다. '김동학이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 모든 경우의 수:카장9단이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 모든 경우의 수 의 대응비는 1:1이다.
의 결론을 낼 수 있습니다. 이는 귀납을 통해 이끌어낸 결론입니다.
귀납의 정의:개별적이고 특수한 사실이나 원리로부터 일반적이고 보편적인 명제나 법칙을 이끌어 내는 논증 방법
김동학이 1번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.
김동학이 2번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.
김동학이 3번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.
김동학이 n번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.
결론:김동학이 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수=1:1


승리하는 사건이 일어나게 하는 경우의 수, 즉 반대의 사건이 일어나게 하는 경우의 수가 반드시 존재한다는 것입니다. 다시 말해, 김동학이 n번째 포진을 두었을 때 김동학이 n번째 포진을 통해 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 있다면 그에 반대되는 사건이 일어나게 하는 경우의 수, 즉 카장9단이 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 반드시 존재합니다. 카장9단이 n번째 포진을 두었을 때 카장9단이 n번째 포진을 통해 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 있다면 그에 반대되는 사건이 일어나게 하는 경우의 수, 즉 김동학이 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 반드시 존재합니다. 이 원리를 통해서 김동학vs카장9단의 포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 개별적인 경우의 수가 있을 때 그와 반대되는 사건이 일어나게 하는 경우의 수가 반드시 존재한다.

'김동학이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 개별적인 경우의 수와 '카장9단이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 개별적인 경우의 수는 1:1로 대응된다. '김동학이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 모든 경우의 수:카장9단이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 모든 경우의 수 의 대응비는 1:1이다.

의 결론을 낼 수 있습니다. 이는 귀납을 통해 이끌어낸 결론입니다.

귀납의 정의:개별적이고 특수한 사실이나 원리로부터 일반적이고 보편적인 명제나 법칙을 이끌어 내는 논증 방법

김동학이 1번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.

김동학이 2번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.

김동학이 3번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.

김동학이 n번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.

결론:김동학이 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수=지는 사건이 일어나게 하는 경우의 수 입니다.

중반전투에서 김동학이 이기는 사건이 일어나게 하는 경우의 수와 중반전투에서 카장9단이 이기는 사건이 일어나게 하는 경우의 수를 비교해보겠습니다. 포진 대결에서의 경우의 수 비교에 비해 간단하게 설명이 가능합니다.

먼저, 장기판에서 일어날 수 있는 경우의 수는 셀 수 없이 많습니다. 따라서 김동학vs카장9단 의 중반전투에서 일어날 수 있는 경우의 수는 셀 수 없이 많습니다. '중반전투에서 김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수는 셀 수 없이 많고, '중반전투에서 카장9단이 이긴다' 라는 사건이 일어나게 하는 경우의 수 또한 셀 수 없이 많습니다.

중반전투에서 김동학이 이기는 사건이 일어나게 하는 경우의 수:카장9단이 이기는 사건이 일어나게 하는 경우의 수=셀 수 없이 많은 수:셀 수 없이 많은 수

따라서 대응비는 1:1입니다.
결론:중반전투에서 김동학이 이기는 사건이 일어나게 하는 경우의 수=중반전투에서 카장9단이 이기는 사건이 일어나게 하는 경우의 수 입니다.

추천 비추천

0

고정닉 0

0

댓글 영역

전체 댓글 0
등록순정렬 기준선택
본문 보기

하단 갤러리 리스트 영역

왼쪽 컨텐츠 영역

갤러리 리스트 영역

갤러리 리스트
번호 제목 글쓴이 작성일 조회 추천
설문 인터넷 트랜드를 가장 빠르게 알고 있을 것 같은 스타는? 운영자 24/11/25 - -
15491121 잘생겼다 개추 못생겼다 비추 야갤러(211.234) 11.26 95 0
15491120 요즘 내 커뮤 워드 ㅁㅌㅊ? [2] 야갤러(118.235) 11.26 119 0
15491119 개두창ㅋㅋㅋㅋㅋㅋㅋ [1] 김윤주갤로그로 이동합니다. 11.26 38 0
15491117 아이린 뮤비 보니까 존나 이쁘네 [5] ㅇㅇ(118.235) 11.26 145 2
15491116 나 마음의 준비가 안됐어 [1] 릅비갤로그로 이동합니다. 11.26 95 0
15491115 보순이 패고싶다 [2] 야갤러(112.146) 11.26 81 2
15491112 지금 눈 <~~ 전라도 ㅇㅇ(1.234) 11.26 86 0
15491111 큐티쁘띠 MAGISTRA갤로그로 이동합니다. 11.26 52 0
15491110 여친구함. [2] 스쿠마갤로그로 이동합니다. 11.26 110 0
15491108 올해 첫눈은 꼭 너와 맞이하고 싶었는데 [1] 보순이갤로그로 이동합니다. 11.26 71 0
15491107 직관 레전드 MAGISTRA갤로그로 이동합니다. 11.26 80 0
15491106 키미가 스키다 [2] 노무쿤(118.32) 11.26 98 0
15491105 잘생겼다 개추 못생겼다 비추 야갤러(211.234) 11.26 96 0
15491103 야순이 비키니 엉덩이 평가해줘 야갤러(223.38) 11.26 158 1
15491102 근데진자엠무는망햇구나이제 [2] 브너갤로그로 이동합니다. 11.26 79 0
15491101 아 섹스하고 싶다. [2] 킹댕갓댕갤로그로 이동합니다. 11.26 110 0
15491100 이쁘다 개추 못생겼다 비추 [2] 야갤러(211.234) 11.26 187 4
15491098 정우성=짜침의 대명사 다됨 ㅁㄴㅇㄹ(175.195) 11.26 83 1
15491097 만약보순이가 초고교급지뢰녀라면 [3] 보순이갤로그로 이동합니다. 11.26 84 0
15491094 노가비 개추좀 노무쿤(118.32) 11.26 122 1
15491092 북한남자 얼굴 [2] ㅇㅇ(118.235) 11.26 194 3
15491091 토토 미니게임 질문좀 [1] 야갤러(180.230) 11.26 38 0
15491089 아는 여자애가 10억 있는거 인증했는데 진짜임? .(106.102) 11.26 63 1
15491088 윤두창<<<이새낀 걍 탄핵이 답임ㅇㅇ [1] 야갤러(114.206) 11.26 37 3
15491087 섹스는 많이할수록 좋아지는게아니라 오히려 만족감이 낮아짐 [8] ㅇㅇ갤로그로 이동합니다. 11.26 151 1
15491085 근데 왜 유튜버 앞에서만 버린 동물들이 나타나냐? ㅇㅇ(211.235) 11.26 36 0
15491084 아들놈 ㄹㅇ 짜증난다 ㅅㅂ [2] 야갤러(175.113) 11.26 78 0
15491082 노래 추천 좀 ㄱㄱ… 마스널갤로그로 이동합니다. 11.26 69 0
15491081 야붕쿤 올해의 recap 나왔어요... [2] 킹댕갓댕갤로그로 이동합니다. 11.26 80 1
15491079 이런년이 니 자지보고 꼬시면 오캄? ㅇㅇ(211.235) 11.26 214 0
15491078 지금 시대에 소지섭마냥 [1] ㅇㅇ(211.118) 11.26 158 0
15491075 천원만상납할야붕이잇냐 [5] 보순이갤로그로 이동합니다. 11.26 85 0
15491074 누구지 ㅇㅇ(143.244) 11.26 140 0
15491073 윗집 정승환 눈사람 듣네 ㅎㅎ 노래 듣는 귀좀 있노 ㅇㅇ(175.215) 11.26 95 0
15491072 노가비 [26] 노무쿤(118.235) 11.26 967 56
15491071 난 어렸을 때 부터 도라에몽 싫어했음 [1] ㅇㅇ(211.246) 11.26 90 0
15491070 1루 2틀 3틀 4흘 [2] ㅇㅇ갤로그로 이동합니다. 11.26 95 0
15491069 속속 제보 입수 [1] (106.101) 11.26 158 2
15491068 망갤 테스트 [2] ㅇㅇ(118.235) 11.26 170 4
15491067 백넘버 노무쿤(118.32) 11.26 96 0
15491066 2틀전에 토익 쳤는데 ㅇㅇ갤로그로 이동합니다. 11.26 78 0
15491065 내 뀨추 섬 ㅇㅇ(118.235) 11.26 144 1
15491064 우와 눈 ㅇㅇ갤로그로 이동합니다. 11.26 45 0
15491063 노가다 추천좀….. [9] 스쿠마갤로그로 이동합니다. 11.26 122 0
15491062 혹시 이사람 ㅁㅌㅊ임? [6] 야갤러(211.252) 11.26 249 0
15491060 아이사한테 '멋진 직업' ㅇㅇ(211.234) 11.26 99 0
15491059 엄마아빠 사랑해요 [2] MAGISTRA갤로그로 이동합니다. 11.26 82 2
15491058 비염있는애들 얼굴형 이상함 ㅇㅇ [8] ㅇㅇ갤로그로 이동합니다. 11.26 163 1
15491057 내 뀨츄 만져조 ㅇㅇ(118.235) 11.26 157 1
15491056 쿠팡 이 애미뒤진 새끼들 야간수당 1.5배 안치는거 실화냐 [4] 야갤러(211.36) 11.26 103 1
뉴스 갓세븐 제이비(JAY B), 오늘(27일) 솔로 정규 1집 발매...재회·설렘 담았다 디시트렌드 10:00
갤러리 내부 검색
제목+내용게시물 정렬 옵션

오른쪽 컨텐츠 영역

실시간 베스트

1/8

뉴스

디시미디어

디시이슈

1/2