갤러리 이슈박스, 최근방문 갤러리
연관 갤러리
웬디 갤러리 타 갤러리(0)
이 갤러리가 연관 갤러리로 추가한 갤러리
0/0
타 갤러리 웬디 갤러리(0)
이 갤러리를 연관 갤러리로 추가한 갤러리
0/0
개념글 리스트
1/3
- 경찰청 블라인이 블라인드에 올린 현재 내란 수사 상황 ㅇㅇ
- [단독] 선관위 들이닥친 계엄군 외부 통신 차단‥'직원 감금' MBC 흰콩
- 싱글벙글 의외의 여초 직장.jpg 최강한화이글스
- 배우 천정명이 5년간 활동 안 한 이유.jpg 감돌
- 개그) AGI가 '인간다움'에 패배하는 만화.manhwa ㅇㅇ
- 방첩사, '계엄 문건' 전면 반박 헬기탄재매이
- “홍장원 제1차장, 공작금 착복” 불륜의혹도 터져 ㅇㅇ
- 등린이 무등산 환종주 다녀왔습니다!! ㅇㅇ
- 대흥민 만회골….gif 해갤러
- 중국우유곽 이것도 주작이었노 내란견새끼들ㅋ ㅇㅇ
- 윤 대통령 지지율 17.3% … 계엄 선포 후 10%대 급락 마스널
- 윤 계엄령에 우호적인 외신 뉴스 봤는데 무섭네 빋갤러
- 싱글벙글 사랑의 힘 코드치기귀찮아
- 싱글벙글 핵연료가 만들어지는 과정.....jpg ㅇㅇ
- 스윗ㅈ팔육 근황 ㄹㅈㄷ.. ㅇㅇ
스압) 36시간 무수면 슈퍼밤샘기미 agf 후기
유희왕 사고싶은게 있어서 일찍 줄설라고 금요일 11시에 기상해서 버스타고 감 근데 시발 차막혀서 버스만 4시간반 걸림... 그러고 터미널 도착 신세계에서 씹덕유튜버 팝업하더라 다시 1시간 반 지하철 타고 근처 맘터에서 저녁먹음 이따 추운데 있을거라 걍 칼로리 제한 풀고 먹음 오랜만에 치킨버거 먹으니 맛있더라 그러고 근처 피시방 가서 친구들이랑 디코하면서 과제함 일행은 옆에서 걔네랑 롤하더라 그러다 갈틱폰도 함 명치맞음 아무튼 그렇게 있다가 5시 반쯤에 줄 보러 나가는데 어! 씨발 눈에 보이 는건 미리 세운 줄 아니 이럴 순 없어 슬슬 걱정되지만 ㅅㅂ 줄 존나 많더라 저게 흡연부스 줄은 아닐 거 아냐 ㅅㅂ... 분명 6시부터라길래 5시 반쯤 가서 근처에서 노가리까다 줄세울 때 가려 했는데 이미 줄세워놓고 있더라 철야 없앤다며 날 속인거니? 그러고 어찌저찌 버티다 실내 갔는데 줄관리 레전드를 찍어버림 민트동그라미가 일행인데 ㅅㅂ 저멀리 가버림 근데 더 골때리는 건 추입으로 따잇함 아무튼 입장 후 빠른걸음으로 유희왕 번호표 뽑고 옆동네 줄 설라 했는데 줄이 존나길어서 포기하고 역돌굑함 대신 최애캐랑 사진찍음 ㅆㅅㅌㅊ 그러고 근처 부스에서 룰렛돌림 결과는 운빨허접 말부이답게 5착 웨하스 받음 그래도 예쁘더라 아래애가 특히 좋았음 그러고 길가는데 누가 갑자기 어깨 두드리는 거 일행인 줄 알고 뭐야 왜 하면서 돌아보는데 처음보는 사람이 무대 가리키면서 납치함 그렇게 자진입대 당한 후 사진찍고 옴 다들 개빠개면서 하하호호 촬영하더라 그러고 피규어샵 가는데 말딸 룩업은 없더라 ㄲㅂ 그 후 다시 유희왕 부스 갔는데 전 국대 싸인회 하길래 호다닥 가서 매트에 싸인받고 같이 사진찍음 아니 웬 말딸이 하면서 알아보시더라 같이 포즈 취해주심 신년 네쨔랑도 찍고 나노머신 썬 있길래 철괴 써보고 옴 그러고 극장 가려고 나가는데 겉옷 꺼내입기 귀찮아서 금방 가겠지~ 하면서 그냥 감 그리고 이새끼는 길을 잘못 들어서 40분동안 영하에 민소매로 다니는 개추운 참사를 일으킴... 그래도 전화위복이었던 게 그렇게 잘못든 길에 특촬물 코스프레가 모여있었음 어릴적 우상과 사진찍었다 평소에도 저 반지 부적으로 가지고 다니길 존나 잘했다 벨트에 내 반지도 한번 스캔해주시더라 서비스 개씨발씹상타치 그후 영화관 가서 타키카페랑도 사진 찍고 rttt랑 말장판 스근하이 봄 다른 일반손님들 많더라 어린애들이 좋아해줘서 기분 좋았음 특히 매점 키오스크에서 옆에 세자매들 인사해주고 포즈 취해주니까 꺄르르 웃더라 부모님이랑도 인사하고 옴 그러고 집감 이날 같이 간 고3쉑 영화 두편 악기바리 시키고 팝콘사주고 키링도 사줌 지하철에서도 임마 편히 재우고 난 안잔 채로 버스 예매랑 내릴 역 케어해줌 그냥 다해줌 근데 지하철 자동문때문에 지연돼서 10시50분차 11시 25분으로 옮김 ㅅㅂ... 아무튼 버스에서 36시간만의 감동의 숙면 후 집옴 와보니 고루시 빅인형 왔길래 뜯었는데 생각보단 작아서 쪼까 아쉬웠음 암튼 씻고 일퀘하고 택배 하나 더 깠는데 시발 카드케이스를 3개 주문제작 했는대 2개가 찐빠나고 하나는 아예 안옴 다행히 다시 보내준다더라 내년에 참고로 옆면은 그 콜라보임 아무튼 그러고 잠 마지막까지 스펙타클한 여행이었다 이번 agf 솔직히 좀 실망이었음 체험부스는 양과 질 둘 다 줄어들었고 거진 굿즈 구매하러 가는 느낌 그래도 rttt 말장판 재개봉 때문에 간거라 보람은 있었음 토뿌로 국화상이랑 재팬컵은 진짜 볼때마다 벅차오르더라 특히 재팬컵 브금 하이라이트 부분이 아 맞다 챔미 B결은 일단 감 저 타키온 더S마A인데 개같이 억까당한 거라 아직도 과제하면서 다시 깎는 중 더S마S 꼬라박은건 아직도 이갈린다 ㄹㅇ 야 김말뿡!!!!!!이번엔 진짜 우승해올게!!!!!
작성자 : 타코야끼아이콘고정닉
o1 pro에게 대학생 수학경시대회 풀게 하기
대수경 = 대학생 수학경시대회kmo 등의 수학경시대회는 보통 고등학생 이상까지만 (즉, 대학 수학을 배우지 않은 사람만) 참가가 가능한데 대수경은대학 수학 교육을 받은 사람들을 대상으로 하는 수학 경시대회kmo 등 중등 수학경시대회보다 더 어려울 거라고 생각하기 쉽지만 사실은 중등교육과정이랑 고등교육과정을 둘 다 비슷한 정도로 알고 있다는 가정 하에 더 높은 지적 능력을 요구하지는 않고, 보통 2-3문제 정도만이 발상적으로 어려운 문제가 출제되긴 함그래도 역시 대한수학회에서 수학 교수님들이 출제하는 문제인 만큼 퀄리티는 좋고 수학 능력을 평가하기 좋음2023년도 문제---------------------------------------------------------------------1번은 극좌표에서 적분으로 넓이 구하는 문제고, 미적분학 같은 데에 연습문제 정도로 나올 만한 문제임과학고 학생들은 2-3학년 때 배우고, 이공계 대학교 1학년에서 배울 정도로 쉬운 문제1번 : 정답 (2분 25초)--------------------------------------------------------------------2번은 간단한 개념 문제그냥 고윳값과 고유벡터 정의만 알면 풀 수 있는 문제고, T^2 (A) = A 인 거 이용해서 characteristic polynomial 로 서술해도 됨2번 : 정답 (38초)----------------------------------------------------------------------3번은 계산 문제로, theta'(t) 를 계산해서 부호만 판별하면 됨3번 : 정답 -------------------------------------------------------------------------------4번은 정수를 어떤 정수들의 합으로 표현하는 방법의 수에 관한 조합론 문제언뜻 봐서는 뭔가 점화식 같은 걸 이용할 것 같지만, 사실은 생성함수를 이용해서 구할 수 있다는 방법이 알려진신기한 문제임이 문제처럼 n을 {1, 2, 4, 8, ...}의 원소들의 합으로 나타내는 방법의 수를 구할 때(1 + x + x^2 + x^3)(1 + x^2 + x^4 + x^6)(1 + x^4 + x^8 + x^12)...라는 식을 전개해서 x^n 의 계수를 보면 된다는 뜻생성함수 발상해낸 것까지는 좋았는데, 처음엔 답을 이렇게 적었길래 더 간단한 형태로 표현할 수 있는 방법을 찾아보라고 함이후 생성함수 변형한 식에서의 x^n의 계수는 i + 2j = n 을 만족하는 (i, j) 순서쌍의 개수라는 걸 알아내서 정답이미 좀 알려진 테크닉이긴 하지만, 처음에 답을 저렇게 쓰고 이후에 고친 걸 보면 풀이를 어디서 그대로 베껴온 게 아니라스스로 발상해냈다고 봐야 하지 않을까 싶음4번 : 정답 ---------------------------------------------------------------5번선형대수학 eigenvalue 관련 문제(1)번은 이미 잘 알려진 정리이고, (2)번은 그걸 응용해서 증명하는 문제근데 이새기 왜 갑자기 영어로 대답함?(2)번 증명할 때 처음에 증명에 오류 있길래 다시 하라고 함두 번째 시도에서는 (BA-I)^2 = 2(BA-AB) 로 변형하고, trace=(eigenvalue의 합) 까지 생각한 건 좋았는데,eigenvalue 제곱합을 구할 때 eigenvalue가 복소수일 수도 있는데 이게 항상 0 이상이라고 생각해버림.(켤레복소수끼리 제곱합을 구해도 0보다 작을 수 있음)대충 읽으면 맞다고 생각할 수도 있지만 틀린 내용이고, 실제로 이 논증과정이 올바르지 않다는 반례 행렬을 찾을 수도 있음.아무튼 아직까지는 이 정도 깊이(수학과 학부 과정) 에서 발생하는 환각은 내부 검증 과정에서 놓치는 듯함이후 힌트 주면서 다시 시도해봤는데도 실패5번 : 오답 (증명 과정에서 오류)-------------------------------------------------------------------------------------------------6번은 정수론 문제로, 식이 좀 복잡해 보이지만 사실은(2023과 서로소인 수 x) x (2023과 서로소인 수 y) = (2023과 서로소인 수)가 된다는 것과, x가 고정돼있을 때 y를 변화시켜가면서 더하면 결국 우변은 2023과 서로소인 수가 전부 한번씩 나온다는 걸 이용하면 쉽게 풀 수 있음그리고 그걸 잘 캐치해내고 식까지 완벽하게 쓴 후 합을 잘 구함. (채점자가 누구라도 만점을 줄 수준)그냥 패턴을 파악해서 푼 거 아니냐? 라고 하면 그건 그렇지만,이 정도 응용문제에서 만약 인간이 수식까지 완벽하게 쓰고 계산실수 없이 답을 잘 구해냈다면누구라도 그 인간 보고 "잘 이해했구나."라고 할 거임.이걸 1트만에 잘 풀었다는 건 언어모델임에도 신기하게 이런 수학적 지식들을 잘 "이해하고 있다"는 뜻6번 : 정답 (1분 19초)------------------------------------------------------------------------------7번은 맨 위 사진에 나와있지는 않은데 이 문제양변에 로그를 씌우든 네제곱을 하든 변형해서 테일러전개식을 쓴 후에, 복잡한 계산과정과 수학적 귀납법 등을 동원해서 a_n이 음이 아닌 정수임을 보여야 하는 문제언뜻 보기는 쉬워보이는데 괜히 7번 문제가 아니듯이 계산과정이 꽤 복잡하고 중간에 수학적 귀납법에서 귀납가정도 잘 써야함.처음에는 a_n 을 그냥 막무가내로 계산 노가다로 구하려고 하다가,좀 복잡한 식 나오니까 "음 이건 자명하진 않은데 보통 이런 합 구하다보면 전부 다 날라가서 정수됨ㅇㅇ" 이 ㅈㄹ 하고 앉았음ㅋㅋㅋ좀 더 엄밀히 계산하고 계산과정 보여달라고 말하니까 접근 방향 바꿔서 잘 쓰긴 하더라근데 이후에도 점화식은 잘 썼는데 계산 과정 틀리고 논리 전개도 틀리길래 한 3번 정도 바로 잡아줌4트째에 성공7번 : 정답 (4분 8초, 4트)------------------------------------------------------------------결과 : 7문제 중 5문제 1트만에 정답, 가장 어려운 7번 4트째에 제대로 풀어냄결론 : 아직 계산 말고 증명 같은 부분에서 조금 복잡해지면 논리 전개에서 실수를 보일 때가 있음특히 부호 판별을 좀 헷갈려 하는 것 같고, 내 생각엔 "그럴 듯한" 증명을 써놓으면 검증 모델이 제대로 검증을 못 해서못 걸러내는 게 아닐까 싶음그래도 수능~대수경 수준까지의 문제들은 어느 정도 잘 푸는 것 같고,진짜 창의적인 발상이나 복잡한 사고를 필요로 하는 IMO나 Putnam 급은 아직 무리가 있지 않나 싶음그래도 4o 나온지 반년, o1-preview 나온지 3개월 정도만에 이 정도면 정말 성장속도가 말이 안된다고 생각함갠적으로 AlphaGeometry 가지고도 한번 테스트해보고 싶은데 걔는 자연어가 안 돼서 너무 피곤하더라...
작성자 : AMI고정닉
차단하기
설정을 통해 게시물을 걸러서 볼 수 있습니다.
댓글 영역
획득법
① NFT 발행
작성한 게시물을 NFT로 발행하면 일주일 동안 사용할 수 있습니다. (최초 1회)
② NFT 구매
다른 이용자의 NFT를 구매하면 한 달 동안 사용할 수 있습니다. (구매 시마다 갱신)
사용법
디시콘에서지갑연결시 바로 사용 가능합니다.